Functional Inequalities for Gaussian and Log-Concave Probability Measures

نویسندگان

  • Ewain Gwynne
  • Elton Hsu
چکیده

We give three proofs of a functional inequality for the standard Gaussian measure originally due to William Beckner. The first uses the central limit theorem and a tensorial property of the inequality. The second uses the Ornstein-Uhlenbeck semigroup, and the third uses the heat semigroup. These latter two proofs yield a more general inequality than the one Beckner originally proved. We then generalize our new inequality to log-concave probability measures, study the relationship between this inequality and a generalized logarithmic Sobolev inequality, and prove several other inequalities for log-concave probability measures, including Brascamp and Lieb’s sharpened Poincaré inequality and Bobkov and Ledoux’s sharpened logarithmic Sobolev inequality of the same form. We discuss some of the potential applications of our work in economics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted Poincaré-type Inequalities for Cauchy and Other Convex Measures

Brascamp–Lieb-type, weighted Poincaré-type and related analytic inequalities are studied for multidimensional Cauchy distributions and more general κ-concave probability measures (in the hierarchy of convex measures). In analogy with the limiting (infinitedimensional log-concave) Gaussian model, the weighted inequalities fully describe the measure concentration and large deviation properties of...

متن کامل

Weighted Poincaré-type Inequalities for Cauchy and Other Convex Measures1 by Sergey

Brascamp–Lieb-type, weighted Poincaré-type and related analytic inequalities are studied for multidimensional Cauchy distributions and more general κ-concave probability measures (in the hierarchy of convex measures). In analogy with the limiting (infinite-dimensional log-concave) Gaussian model, the weighted inequalities fully describe the measure concentration and large deviation properties o...

متن کامل

Remarks on Gaussian Noise Stability, Brascamp-Lieb and Slepian Inequalities

E. Mossel and J. Neeman recently provided a heat flow monotonicity proof of Borell’s noise stability theorem. In this note, we develop the argument to include in a common framework noise stability, Brascamp-Lieb inequalities (including hypercontractivity), and even a weak form of Slepian inequalities. The scheme applies furthermore to families of measures with are more log-concave than the Gaus...

متن کامل

On the role of Convexity in Functional and Isoperimetric Inequalities

This is a continuation of our previous work [41]. It is well known that various isoperimetric inequalities imply their functional “counterparts”, but in general this is not an equivalence. We show that under certain convexity assumptions (e.g. for log-concave probability measures in Euclidean space), the latter implication can in fact be reversed for very general inequalities, generalizing a re...

متن کامل

Dimensional behaviour of entropy and information

We develop an information-theoretic perspective on some questions in convex geometry, providing for instance a new equipartition property for log-concave probability measures, some Gaussian comparison results for log-concave measures, an entropic formulation of the hyperplane conjecture, and a new reverse entropy power inequality for log-concave measures analogous to V. Milman’s reverse Brunn-M...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013